REALIZABILITY OF THE TORUS AND THE PROJECTIVE PLANE IN \mathbb{R}^4

BY

ULRICH BREHM

Technical University of Dresden
Institute of Geometry, 01062 Dresden, Germany
e-mail: brehm@math.tu-dresden.de

AND

GÖRAN SCHILD

German National Research Center for Computer Science (GMD)

PF 1316, 53731 Sankt Augustin, Germany

e-mail: qoeran.schild@qmd.de

ABSTRACT

We show that every triangulation of the projective plane or the torus is isomorphic to a subcomplex of the boundary complex of a simplicial 5-dimensional convex polytope and thus linearly embeddable in \mathbb{R}^4 .

In [1] it was proved that every triangulation of the projective plane is linearly embeddable in \mathbb{R}^4 . Here we give a simpler proof of this observation and we show additionally that the same holds for the torus. We show in addition that they are convexly embeddable, i.e., every such triangulation is a subcomplex of the boundary complex of a simplicial 5-dimensional convex polytope.

We use an easy provable lemma being a modification of lemma 2 in [4].

LEMMA: Let U, V be two orthogonal subspaces of \mathbb{R}^n and $P \subseteq U$, $Q \subseteq V$ two convex polytopes such that $\mathbf{0} \in \text{rel int } P$ and $\mathbf{0} \in \text{rel int } Q$. Let \mathcal{F} be the boundary complex of P. Then $|\mathcal{F}|$ and Q are in general position (i.e. they are joinable) and their join $|\mathcal{F}|Q$ is a convex polytope.

Received January 17, 1994

THEOREM: Each triangulation of the projective plane or the torus is a subcomplex of the boundary complex of some simplicial 5-dimensional convex polytope.

Proof: Let \mathcal{K} be a simplicial complex such that $|\mathcal{K}|$ is the projective plane or the torus. Let \mathfrak{c} be a cycle representing a nontrivial element of the first homology group of \mathcal{K} over the field of integers modulo 2 such that \mathfrak{c} has a minimal number of edges. \mathfrak{c} as a Eulerian graph is the sum of circles and, because of the minimality property, \mathfrak{c} itself is a circle.

Let \mathcal{L} be the subcomplex of \mathcal{K} spanned by the vertices of \mathfrak{c} (that is, the set of simplexes of \mathcal{K} with vertex set in \mathfrak{c}). Then \mathcal{L} consists of exactly the vertices and edges of \mathfrak{c} : \mathfrak{c} cannot have a diagonal in \mathcal{K} because otherwise \mathfrak{c} would be a sum, $\mathfrak{c} = \mathfrak{c}_1 + \mathfrak{c}_2$, of two circles $\mathfrak{c}_1, \mathfrak{c}_2 \neq 0$, each consisting of the diagonal and of a part of \mathfrak{c} , \mathfrak{c}_1 and \mathfrak{c}_2 being smaller than \mathfrak{c} and one of them not being homologously trivial. \mathcal{L} cannot contain a triangle σ , otherwise \mathfrak{c} would be the boundary of σ .

Let \mathcal{M} be the subcomplex of \mathcal{K} consisting of all simplexes of \mathcal{K} in which the vertices of \mathcal{L} do not appear. Then $|\mathcal{M}|$ is planar because, if we remove a regular neighborhood of \mathcal{L} from \mathcal{K} , there will remain a disk or a cylinder (for the methods of proving this see, e.g., [2]).

 \mathcal{M} as a planar set can be extended to a triangulation \mathcal{M}' of the sphere (see [3], p. 36). By the theorem of Steinitz [5], \mathcal{M}' is the boundary complex of a 3-dimensional convex polytope P. \mathcal{L} can be considered as the boundary complex of a 2-dimensional convex polytope Q. By our lemma we can now construct a 5-dimensional convex polytope R by joining P and the boundary of Q such that the join $\mathcal{L}\mathcal{M}'$ is the boundary complex of R.

Every simplex $\sigma \in \mathcal{K}$ is of the form $\sigma = \tau \nu$ where $\tau \in \mathcal{L}$ and $\nu \in \mathcal{M}$. It follows that $\mathcal{K} \subset \mathcal{LM} \subset \mathcal{LM}'$, showing the assertion.

Remark: The method of the proof cannot be applied for the Klein bottle or for other surfaces of higher genus. Take, for example, two triangulations of the projective plane, remove a triangle from each and glue them along their boundaries in order to get a triangulation \mathcal{K} of the Klein bottle. Let a,b,c denote the edges of the common boundary of the two Möbius strips. Subdivide \mathcal{K} to get a triangulation \mathcal{K}' such that a,b and c are not subdivided in \mathcal{K} and such that, after the removal of all simplexes having a nonempty intersection with a,b,c, there will remain two Möbius strips. Then \mathcal{K}' has the following obvious property: If \mathfrak{c} is a circle such that a removal of \mathfrak{c} results in a planar complex then

 \mathfrak{c} has one of the edges a, b, c as a diagonal and therefore \mathcal{L} contains not only the edges and vertices of \mathfrak{c} , with the terminology used above.

References

- [1] D. Barnette, All triangulations of the projective plane are geometrically realizable in E^4 , Israel Journal of Mathematics 44 (1983), 75-87.
- [2] P.J. Giblin, Graphs, Surfaces and Homology, Mathematics Series, Chapman and Hall, New York, 1977.
- [3] H. Sachs, Einführung in die Theorie der endlichen Graphen, Volume II, Teubner Verlagsgesellschaft, Leipzig, 1972.
- [4] G. Schild, Some minimal nonembeddable complexes, Topology and its Applications 53 (1993), 177–185.
- [5] E. Steinitz, Polyeder und Raumeinteilungen, in Enzykl. der math. Wiss. 3 (Geometrie), Volume 3AB12, Teubner Verlagsgesellschaft, Leipzig, 1922, pp. 1-139.